

	

	
	
		
			

						
				
					
				
				
					
				
			

						
					Products
 							Better Excel Exporter
for Jira

	Better Excel Automation
for Jira

	Better PDF Exporter
for Jira

	Better PDF Automation
for Jira

	Better Content Archiving
for Confluence

	Better Commit Policy
for Jira

	Better Commit Policy
for Bitbucket

	Better DevOps Automation
for Jira

					
	Services
 							Template Development

	Implementation

	Custom Development

					
	Support

							Customer Support

	System Status
	Documentation

	Video Library

	Webinars

	Search

					
	Company

							About

	Customers

	Success Stories

	Security & Trust

	Technology Partners

	Solution Partners

	Sales Enablement Kits

	Jobs

	Contact Us

					
	Blog

	We are hiring!

	

			
		

	

	
		
										Charts

				
					Better PDF Exporter for Jira Server
									

					

	
				
			
				
												Want to generate Excel reports too?
		Check out our Excel exporter app!
								

		
	

	

			
	
		🛡️ Midori is now SOC 2 compliant!
		Learn more →
	

	

	
		
				
		
			
				
						
		Hosting:
		
											Server
									

											Data Center
									

											Cloud
									

	

Useful links

	Get a free trial license
	Buy a supported license						For pre-5.0.0 versions

			
	Ask for support
	At Atlassian Marketplace →
	Back to overview ↵

	

	

Inspiration

	Success stories
	PDF export samples			Issue exports
	Issue lists
	Jira dashboards & reports
	Timesheets & invoices
	Jira Software exports
	Jira Service Mgmt. exports
	Advanced Roadmaps exports
	Release notes
	Gantt charts
	Zephyr Squad test exports
	ScriptRunner exports
	Xray exports
	Structure exports
	Insight exports
	Git Integration exports
	Elements Connect exports
	Jira Misc Custom Fields exports
	Gliffy diagram exports
	JEditor exports
	Table Grid Editor exports
	Table Grid Next Gen exports
	Projectrak exports
	Project status reports
	Requirements specification
	Traceability matrix reports
	Color Custom Fields exports
	Custom reports

	

Resources

	Installation
	Version history (Upgrade guides)
	Cloud migration guide 	

	Security & Trust 	

	Troubleshooting
	FAQ

Tutorials

	Tutorial videos
	Tutorial articles
	Embedding attachments
	QR codes & barcodes
	Drawing charts

Documentation

	User manual
	Customizing PDF exports			File properties
	Scripting
	Dashboards
	Expressions
	Recipes
	Fonts
	Performance tuning

	
	Integrations			Advanced Roadmaps
	Automation for Jira
	Color Custom Fields
	Elements Connect
	Git Integration
	Gliffy
	Insight
	JEditor (Jira Editor)
	Jira Misc Custom Fields (JMCF)
	Jira Service Management
	Jira Software
	Projectrak
	ScriptRunner
	Structure
	Table Grid Editor
	Table Grid Next Generation
	Tempo Timesheets
	Xray
	Zephyr Squad

	
	Automation (APIs)				Java/Groovy API
	REST API

		

Related services

	PDF template development
	PDF export integration
	Custom development

				

			

		

	

	
		
							In this page

				
Charts
Prerequisites
Why use charts?
Drawing charts in Jira PDF exports
For the impatient
Collecting the input data for charts
Inserting chart images to PDF
Examples
Line chart: created vs resolved issues
Pie chart: issues by status
Bar chart: issues by assignee
Complex visualizations

					

						
	Charts

Prerequisites

	
		Please read generic script development with Better PDF Exporter first. This tutorial assumes that you know how to write scripts for the app.
	

Why use charts?

	
		Charts are visual representations of Jira data.
		Charts often make it easier to understand the data in business reports, because readers can easily pick out patterns and trends illustrated in the charts that are otherwise difficult to see when looking at raw numbers.
	

Drawing charts in Jira PDF exports

For the impatient

	
		In case you are not very interested in how it works behind the scenes (or you already know that), you can use the charts.groovy mini library (shipped with Better PDF Exporter) to render charts from Jira data to PDF exports.
		The benefit of using this mini library is that you can focus on your custom data collection- and chart customization logic, not on the repetitive plumbing code.
	

	
		How to use it?
		
	Execute the library Groovy script in your template code with this single line:

issue-fo.vm

$scripting.execute("charts.groovy")

			
	Implement the method to collect data and build the dataset for JFreeChart:

// MyReport.groovy

PieDataset getMyDataset(issues) {
	// collect the data here and transform it to a dataset that JFreeChart expects

	return dataset
}

			
	Implement the chart customizer callback:

// MyReport.groovy

def getMyCustomizer() {
	return { chart ->
		// customize the chart here, setting colors and other properties
	}
}

			
	Pass these two, along with desires dimensions of the chart image, to the corresponding method of the $charts object. Insert the returned Base64 encoded chart image to your PDF:

issue-fo.vm

<fo:external-graphic content-height="4cm" src="data:image/png;base64,$chart.drawPieChart($myReport.myDataset, $myReport.myCustomizer, 400, 200)"/>

			

	
	
		Done. Congratulations!
	

	
		Please read the following sections to get a better understanding of the details.
	

Collecting the input data for charts

	
		Your work starts with collecting the data that you want to visualize. This usually includes processing the input set of issues (typically returned by a Jira filter or JQL query), and performing calculations on them.
	

	
		Say, you just want to draw a piechart that shows the status distribution of the issues.
		For this, you should simply iterate over those issues, get the status name of the current item and increment the corresponding counter in a mapping from status names to status counts.
	

	
		At this point you must understand that the chart images themselves will be created with the wonderfully rich and flexible JFreeChart library (see a quick catalog of charts).
		This affects the way you collect data.
		In case of doubts: Jira is using the same library to render its standard built-in charts, so JFreeChart is already a part of your Jira instance.
	

	
		You have your data in some format by now, but you have to transform that to the format in which JFreeChart expects it.
		You could, of course, prepare the data immediately in JFreeChart's preferred format, but in our experience it is better to utilize libraries designed specifically for data processing in the first step, and then make another transformation to convert the data to JFreeChart datasets.
	

	
		Different types of charts require different type of datasets. See this quick list about the most important base types:
	

		Chart type	Dataset type	Also includes
	Line chart	TimeSeriesCollection	Timeseries-, step- and other XY charts.
	Pie chart	PieDataset	3D- and multi-pie charts.
	Bar chart	CategoryDataset	3D-, stacked-, grouped and horizontal bar charts.

	
		As soon as you have your dataset, you can actually create your chart object.
	

Inserting chart images to PDF

	
		You can create the chart object by passing the dataset to the $charts object. Other arguments of this method call are a so-called customizer callback and the image dimensions in pixels.
		The customizer receives the $chart object (note the singular!) as its only argument, which is a valid instance of the JFreeChart object that represents your chart.
		As its name suggests, in the customizer you can apply customizations to the chart, like changing the colors from the defaults, change the orientation from horizontal to vertical, or hide the legend among others.
	

	
		What the $charts does is that it creates $chart, invokes the customizer on that, renders the chart into a PNG image (in memory) and returns that PNG as a Base64 encoded string.
	

	
		To insert the image to the PDF, use an <fo:external-graphic> element in the PDF template.
		Instead of referencing an external image file with an absolute URL, insert the chart image by using a so-called data URI.
		A data URI basically contains the mimetype (which is image/png here), the encoding (Base64 here) and the actual bytes of the image in Base64 encoded format. In your case, the FO code will look like this, the
		actual bytes appearing in the place of "...":

<fo:external-graphic content-height="4cm" src="data:image/png;base64,..."/>

	
	
		Congratulations, you have your chart image exported in the PDF now! Continue reading through the examples.
	

	Examples

	
		Here are some real life examples for rendering the basic chart types. Whilst they are usable "as is", they can also be used as starting point when developing other charts.
	

	
		The source code shown in this section can be found in the hello-charts.groovy and the matching hello-charts-fo.vm files that are shipped with the app as default resources.
	

	Line chart: created vs resolved issues

	
			

		
			
			

		
	

		
	
		This is one of the most popular standard charts in Jira, which you can now customize and export to PDF reports!
	

	
		Here is how it works. For each issue, we calculate on which day it was created and which day it was resolved (if it is resolved at all). We collect the map from days to issues created on that day using a Multiset, and do similarly for issues resolved in a given day.
		Then we transform this data to two separate timeseries datasets (this is the input for JFreeChart), and during the tranformation we sum the values so that the chart becomes "cumulative". We finally return a timeseries collection that contains both timeseries.
		In the customizer, we configure the chart not to fill the area under the lines (as that may not be ideal for prints), plus we set the colors and shapes to be used for drawing.
	

	
		Data collector:

TimeSeriesCollection getCreatedVsResolvedDataset(issues) {
	def createdByDay = new TreeMultiset()
	def resolvedByDay = new TreeMultiset()
	issues.each {
		createdByDay.add(new Day(it.getCreated()))
		if(it.resolutionDate) {
			resolvedByDay.add(new Day(it.resolutionDate))
		}
	}

	def createdSeries = new TimeSeries("created")
	int cummulativeTotal = 0
	for(day in createdByDay.elementSet()) {
		cummulativeTotal += createdByDay.count(day)
		createdSeries.add(day, cummulativeTotal)
	}

	def resolvedSeries = new TimeSeries("resolved")
	cummulativeTotal = 0
	for(day in resolvedByDay.elementSet()) {
		cummulativeTotal += resolvedByDay.count(day)
		resolvedSeries.add(day, cummulativeTotal)
	}

	def dataset = new TimeSeriesCollection()
	dataset.addSeries(createdSeries)
	dataset.addSeries(resolvedSeries)

	return dataset
}

	
	
		Customizer:

def getCreatedVsResolvedCustomizer() {
	return { chart ->
		chart.plot.renderer = new XYAreaRenderer()
		chart.plot.renderer.plotLines = true
		chart.plot.renderer.plotShapes = true
		chart.plot.renderer.plotArea = false

		chart.plot.renderer.setSeriesStroke(0, RenderingUtils.LINE_STROKE)
		chart.plot.renderer.setSeriesPaint(0, CREATED_COLOR)
		chart.plot.renderer.setSeriesShape(0, RenderingUtils.CIRCLE_SHAPE)

		chart.plot.renderer.setSeriesStroke(1, RenderingUtils.LINE_STROKE)
		chart.plot.renderer.setSeriesPaint(1, RESOLVED_COLOR)
		chart.plot.renderer.setSeriesShape(1, RenderingUtils.CIRCLE_SHAPE)
	}
}

	
	
		FO:

<fo:external-graphic content-height="4cm" src="data:image/png;base64,$chart.drawTimeSeriesChart($helloCharts.getCreatedVsResolvedDataset($issues), $helloCharts.createdVsResolvedCustomizer, 800, 200)"/>

	

	Pie chart: issues by status

	
			

		
			
			

		
	

		
	
		This is the simplest of all examples.
	

	
		We count the occurrence of all status using a Multiset (from Guava), then transform it to the corresponding pie dataset.
		Finally, we customize the chart to use a color gradient.
	

	
		Data collector:

PieDataset getIssueCountByStatusDataset(issues) {
	def statusCounts = new HashMultiset()
	issues.each {
		statusCounts.add(it.statusObject.name)
	}

	def dataset = new DefaultPieDataset()
	statusCounts.elementSet().each {
		dataset.setValue(it, statusCounts.count(it))
	}

	return dataset
}

	
	
		Customizer:

def getIssueCountByStatusCustomizer() {
	return { chart ->
		chart.plot.baseSectionOutlinePaint = RenderingUtils.BACKGROUND_COLOR
		chart.plot.drawingSupplier = new GradientDrawingSupplier(chart.plot.dataset.itemCount)
	}
}

	
	
		FO:

<fo:external-graphic content-height="4cm" src="data:image/png;base64,$chart.drawPieChart($helloCharts.getIssueCountByStatusDataset($issues), $helloCharts.issueCountByStatusCustomizer, 400, 200)"/>

	

	Bar chart: issues by assignee

	
			

		
			
			

		
	

		
	
		Although this chart type is different from the previous one, the code is fairly similar.
	

	
		We count the issues for each assignee, also increasing a separate counter for the unassigned issues.
		We customize the chart to be horizontal and to paint the bars with green.
	

	
		Data collector:

CategoryDataset getIssuesByAssigneeDataset(issues) {
	def issuesByStatus = new TreeMultiset()
	issues.each {
		if(it.assignee) {
			issuesByStatus.add(it.assignee.displayName)
		} else {
			issuesByStatus.add("Unassigned")
		}
	}

	def dataset = new DefaultCategoryDataset()
	issuesByStatus.elementSet().each {
		dataset.setValue(issuesByStatus.count(it), "count", it)
	}

	return dataset
}

	
	
		Customizer:

def getIssuesByAssigneeCustomizer() {
	return { chart ->
		chart.plot.orientation = PlotOrientation.HORIZONTAL
		chart.plot.renderer.setSeriesPaint(0, RESOLVED_COLOR)
		chart.plot.renderer.setSeriesOutlinePaint(0, RenderingUtils.BACKGROUND_COLOR)
	}
}

	
	
		FO:

<fo:external-graphic content-height="4cm" src="data:image/png;base64,$chart.drawBarChart($helloCharts.getIssuesByAssigneeDataset($issues), $helloCharts.issuesByAssigneeCustomizer, 400, 200)"/>

	

Complex visualizations

	
		OK, I understand these, but can I build reports that more complicated?
	

	
		Yes.
	

	
		Obviously, if you want to visualize more complicated data, your data collection code will be more complicated.
	

	
		It is important to understand that you are not limited to the issues as the only input data. You can get other data from Jira (ex: versions, user accounts) and you can connect to external sources of data, like
					external databases or an external web service.
			

	
		The Groovy scripting facilities in the Better PDF Exporter app enable implementing business reports of any complexity.
		Groovy has well-documented libraries to process data, to connect to databases or to connect to web services. As Java integrates nicely with Groovy, you can use any Java library, too!
		We, for instance, love using Guava for general data processing or Joda Time when working with time values.
	

	
		Really, there are no limits to what you can do with this technique.
	

	Questions?

		Ask us
 any time.

			
				
			

		

	

		

	

	
		
			
				
					Products

					Better Excel Exporter for Jira

					Better Excel Automation for Jira

					Better PDF Exporter for Jira

					Better PDF Automation for Jira

					Better Content Archiving for Confluence

					Better Commit Policy for Jira

					Better Commit Policy for Bitbucket
					Better DevOps Automation for Jira
				

			

			
				
					Support

					Customer Support

					System Status

					Documentation

					Video Library

					Webinars

					Search

				

			

			
				
					Latest news

					

																		How to fix the flaws in Confluence Daily Digest

																								What is a Confluence page owner and how to use it best

																								Export a Jira version report to Excel

																								Confluence notification and reminder to page owners

																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						more news →
				

			

			
				
					Get in touch

					info@midori-global.com

					On the Atlassian Marketplace →

					Subscribe the Midori Newsletter

					Join the Midori community →

					Security & Trust

					Privacy Policy

					EULA

					© 2023 Midori.

					

					
						
						
					
					
						
						
					
					
						
						
					
					
						
						
					
				

			

		

	

